Принятие решений в неопределенности стр.12

«Привязка» при оценке распределения субъективной вероятности

При анализе принятия решений, от экспертов часто требуется выразить свое мнение относительно какой-либо величины, например, среднего значения индекса Доу-Джонса (Dow-Jones) в отдельно взятый день, в виде распределения вероятности. Такое распределение обычно строится путем выбора значений для величины, которые соответствуют его процентной шкале распределения вероятности. Например, эксперта можно попросить выбрать число, Х90 так, чтобы субъективная вероятность того, что это число будет выше, чем значение среднего числа Доу-Джонса, была 0.90. То есть, он должен выбрать значение Х90, так чтобы в 9 случаях к 1 среднее значение ин декса Доу-Джонса не превышало это число. Распределение субъективной вероятности значения среднего числа Доу-Джонса может быть построено из нескольких таких оценок, выраженных с помощью различных процентных шкал.

Путем накопления таких субъективных распределений вероятности для различных величин, можно проверить правильность оценок эксперта. Эксперт считается калиброванным (см. гл. 22) должным образом в определенном наборе проблем, если только 2 процента правильных значений оцененных величин будут ниже заданных значений Х2. Например, правильные значения должны быть ниже Х01 для 1% величин и быть выше Х99, для 1% величин. Таким образом, истинные значения должны строго попадать в интервал между Х01 и Х99 в 98% задач.

Несколько исследователей (Alpert и Raiffa, 1969, 21; Stael von Holstein, 1971b; Winkler, 1967) проанализировали нарушения в оценке вероятности для многих количественных величин для большого числа экспертов. Эти распределения указали на обширные и систематические отклонения от надлежащих оценок. В большинстве исследований, фактические значения оцененных величин или меньше Х01 или больше, чем Х99 приблизительно для 30% задач. То есть, испытуемые устанавливают слишком узкие строгие интервалы, которые отражают их уверенность, чем их знания относительно оцененных величин. Это предубеждение характерно как для подготовленных, так и для простых тестируемых, и этот эффект не устраняется путем введения правил оценки, которые обеспечивают стимулы для внешней оценки. Этот эффект, по крайней мере, частично, относится к «привязке».

Чтобы выбрать Х90 как значение среднего числа Доу-Джонса, например, естественно начать с размышления о лучшей оценке индекса Доу-Джонса и «скорректировать» верхние значения. Если эта «корректировка» - как и большинство других - является недостаточной, то Хш не будет достаточно экстремальным. Подобный эффект фиксирования произойдет в выборе Х10, который предположительно получен путем корректировки чьей-либо лучшей оценки в сторону понижения. Следовательно, достоверный интервал между Х10 и Х90 будет слишком узкий, и оцененное распределение вероятности будет слишком жестким. В подтверждение этой интерпретации можно показать, что субъективные вероятности систематически меняются посредством процедуры, в которой чья-либо лучшая оценка не служит «привязкой».

Распределения субъективной вероятности для данной величины (среднее число Доу-Джонса) могут быть получены двумя различными способами: (i), попросить испытуемого выбрать значение числа Доу-Джонса, которое соответствует распределению вероятности выраженной с помощью процентной шкалы и (И), попросить испытуемого оценить вероятности того, что истинное значение числа Доу-Джонса превысит некоторые указанные величины. Эти две процедуры формально эквивалентны и должны приводить в результате к идентичным распределениям. Однако они предлагают различные способы корректировки от различных «привязок». В процедуре (i), естественная отправная точка - лучшая оценка качества. В процедуре (ii), с другой стороны, тестируемый может «привязаться» к величине, установленной в вопросе. В противоположность этому, он может «привязаться» к равным шансам, или к шансам 50 на 50, которые являются естественной отправной точкой при оценке вероятности. В любом случае, процедура (ii) должна завершаться менее крайними оценками, чем процедура (i).


⇐ назад к прежней странице | | перейти на следующую страницу ⇒