Принятие решений в неопределенности стр.4

Испытуемые правильно использовали предшествующие вероятности, когда они не обладали иной информацией. В отсутствии краткого описания личности, они оценивали вероятность того, что неизвестный человек является инженером, как 0.7 и 0.3, соответственно, в обоих случаях, при обоих условиях частоты базовых значений. Однако предшествующие вероятности полностью игнорировались, когда было представлено описание, даже если оно было полностью неинформативно. Реакции на нижеизложенное описание иллюстрируют это явление:

Дик - 30-летний мужчина. Женат, еще не имеет детей. Очень способный и мотивированный сотрудник, подает большие надежды. Пользуется признанием коллег.

Это описание было задумано таким образом, чтобы не предоставить информации о том, является ли Дик инженером или адвокатом. Следовательно, вероятность того, что Дик является инженером, должна равняться пропорции инженеров в группе, как если бы не было дано описания вовсе. Испытуемые, однако, оценили вероятность того, что Дик является инженером, как 5 независимо от того, какая дана пропорция инженеров в группе (7 к 3 или 3 к 7). Очевидно, что люди реагируют по-разному в ситуациях, когда описание отсутствует и когда дано бесполезное описание. В случае, когда описания отсутствуют, предшествующие вероятности используются должным образом; и предшествующие вероятности игнорируются, когда дается бесполезное описание (Kahneman и Tversky, 1973,4).

Нечувствительность к размеру выборки

Чтобы оценивать вероятность получения конкретного результата в выборке, отобранной из указанной совокупности, люди обычно применяют эвристику репрезентативности. То есть они оценивают вероятность результата в выборке, например, то, что средняя высота в случайной выборке из десяти человек будет б футов (180 сантиметров), в степени в какой этот результат подобен соответствующему параметру (то есть средней высоте людей среди всего населения). Подобие статистики в выборке типичному параметру у всего населения не зависит от размера выборки. Следовательно, если вероятность рассчитывается с помощью репрезентативности, то статистическая вероятность в выборке будет по существу независима от размера выборки. Действительно, когда тестируемые оценивали распределение средней высоты для выборок различных размеров, они производили идентичные распределения. Например, вероятность получения средней высоты более чем 6 футов (180 см) была оценена подобной для выборок 1. ООО, 100 и 10 человек (Kahneman и Tversky, 1972b, 3). Кроме того, испытуемые не сумели оценить роль размера выборки даже, когда это было подчеркнуто в формулировке проблемы. Приведем пример, подтверждающий это.

Некоторый город обслуживается двумя больницами. В большей по размеру больнице рождаются приблизительно 45 младенцев каждый день, а в меньшей больнице, приблизительно 15 младенцев каждый день. Как Вы знаете, приблизительно 50% от всех младенцев - мальчики. Однако точный процент меняется со дня на день. Иногда он может быть выше, чем 50%, иногда ниже.

В течение одного года, каждая больница делала учет тех дней, когда больше чем 60% рожденных младенцев были мальчиками. Какая больница, по вашему мнению, сделала учет большего количества таких дней?

Большая по размеру больница (21)

Меньшая больница (21)

Примерно поровну (то есть в пределах разницы в 5%) (53)

Числа в круглых скобках указывают количество отвечавших студентов последних курсов.

Большинство тестируемых оценивало вероятность того, что будет более 60% мальчиков в равной степени и в маленькой, и в большой больнице, возможно, потому что эти события описаны одинаковой статистикой и, таким образом, одинаково репрезентативны по отношению ко всему населению. Напротив, согласно теории выборок, ожидаемое число дней, в которые больше чем 60% рожденных младенцев являются мальчиками, намного выше в маленькой больнице, чем в большой, потому что для большой выборки менее вероятно, отклонение от 50%. Это фундаментальное понятие статистики, очевидно, не является частью интуиции людей.


⇐ назад к прежней странице | | перейти на следующую страницу ⇒